Abstract

To determine whether salvianolic acid B (Sal B) exerts protective effects on diabetic peripheral neuropathy by attenuating apoptosis and pyroptosis. RSC96 cells were primarily cultured with DMEM (5.6 mmol/L glucose), hyperglycemia (HG, 125 mmol/L glucose) and Sal B (0.1, 1, and 10 µ mol/L). Cells proliferation was measured by 3-(4, 5-cimethylthiazol-2-yl)-2, 5-dilphenyltetrazolium bromide assay. Reactive oxygen species (ROS) generation and apoptosis rate were detected by flow cytometry analysis. Western blot was performed to analyze the expressions of poly ADP-ribose polymerase (PARP), cleaved-caspase 3, cleaved-caspase 9, Bcl-2, Bax, NLRP3, ASC, and interleukin (IL)-1β. Treatment with HG at a concentration of 125 mmol/L attenuated cellular proliferation, while Sal B alleviated this injury (P<0.05). In addition, Sal B inhibited HG-induced ROS production and apoptosis rate (P<0.05). Furthermore, treatment with Sal B down-regulated HG-induced PARP, cleaved-caspase 3, cleaved-caspase 9, Bax, NLRP3, ASC, and IL-1β expression, but mitigated HG-mediated down-regulation of Bcl-2 expression (P<0.05). Sal B may protect RSC96 cells against HG-induced cellular injury via the inhibition of apoptosis and pyroptosis activated by ROS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.