Brain extracellular space (ECS) is a narrow, irregular space, which provides immediate living environment for neural cells and accounts for approximately 15%-20% of the total volume of living brain. Twenty-five years ago, as an interventional radiologist, the author was engaged in investigating early diagnosis and treatment of cerebral ischemic stroke, and the parameters of brain ECS was firstly derived and demonstrated during the study of the permeability of blood-brain barrier (BBB) and its diffusion changes in the cerebral ischemic tissue. Since then, the author and his team had been working on developing a novel measuring method of ECS: tracer-based magnetic resonance imaging (MRI), which could measure brain ECS parameters in the whole brain scale and make the dynamic drainage process of the labelled brain interstitial fluid (ISF) visualized. By using the new method, the team made a series of new findings about the brain ECS and ISF, including the discovery of a new division system in the brain, named regionalized ISF drainage system. We found that the ISF drainage in the deep brain was regionalized and the structural and functional parameters in different interstitial system (ISS) divisions were disparate. The ISF in the caudate nucleus could be drained to ipsilateral cortex and finally into the subarachnoid space, which maintained the pathway of ISF-cerebrospinal fluid (CSF) exchange. However, the ISF in the thalamus was eliminated locally in its anatomical division. After verifying the nature of the barrier structure between different drainage divisions, the author proposed the hypothesis of "regionalized brain homeostasis". Thus, we demonstrated that the brain was protected not only by the BBB, which avoided potential exogenous damage through the vascular system, but was also protected by an internal ISF drainage barrier to avoid potentially harmful interference from other ECS divisions in the deep brain. With the new findings and the proposed hypothesis, an innovative therapeutic method for the treatment of encephalopathy with local drug delivery via the brain ECS pathway was established. By using this new administration method, the drug was achieved directly to the space around neurons or target regions, overwhelming the impendence from the blood-brain barrier, thus solved the obstacles of low efficiency in traditional drug investigation. At present, new methods and discoveries developed by the author and his team have been widely applied in several frontier fields including neuroscience, new drug research and development, neurodevelopment aerospace medicine, clinical encephalopathy treatment,new neural network modeling and so on.
Read full abstract