Abstract

Protein posttranslational modifications (PTMs), including acetylation, have emerged as important regulators for controlling many cellular processes. DNA base excision repair (BER), a highly coordinated multistep cellular process, is primarily involved in the repair of both endogenous and drug-induced exogenous DNA base damages. BER relies on sequential recruitment and coordinated actions of multiple proteins. Increasing evidence suggests that acetylation of lysine residues of BER proteins facilitates fine-tuning of enzymatic activities, protein-protein interactions, and coordination of the steps in BER pathway. In this chapter, we describe detailed in vitro and in vivo approaches to examine the effect of acetylation on BER enzymes, focusing on the impact of acetylation of AP-endonuclease (APE1), a key enzyme in BER pathway, on its DNA damage repair activity, substrate-binding, and subcellular localization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.