Background/Objective: Conventional techniques for evaluating hydration status include the analysis of blood, urine, and body weight. Recently, advancements in dentistry have introduced capacitance sensor-based oral epithelial moisture meters as promising avenues for assessment. This study aimed to examine the correlation between oral mucosal moisture content, as determined using a capacitance sensor, and exercise-induced dehydration. Methods: A total of 21 participants engaged in a 120 min slow distance exercise session. A series of measurements were taken before and after the exercise session, including body weight, sweat rate, secretory immunoglobulin A (s-IgA) concentration in saliva samples, saliva flow rate, and oral mucosal moisture content, which were assessed using a capacitance sensor. The relationship between physical dehydration and oral mucosal moisture content was investigated using statistical analysis. Receiver operating characteristic curves were constructed to ascertain whether variations in oral mucosal moisture content could discern body mass losses (BMLs) of 1.5% and 2%. Results: A significant correlation was observed between the sweat rate during exercise and the change in oral mucosal moisture content before and after exercise (Spearman's rank correlation coefficient: ρ = -0.58, p < 0.001). The salivary flow and s-IgA secretion rates were lower after the exercise period than before, whereas the s-IgA concentration was higher. Oral mucosal moisture decreased during the exercise period. Receiver operating characteristic curve analysis revealed that differences in oral mucosal moisture content exhibited discriminative capabilities, with area under the curve values of 0.79 at 1.5% BML and 0.72 at 2% BML. Conclusions: The measurement of oral mucosal moisture using capacitance sensors represents a promising noninvasive approach for the assessment of exercise-induced dehydration.
Read full abstract