The role of language in numerical processing has traditionally been restricted to counting and exact arithmetic. Nevertheless, the impact that each of a bilinguals’ languages may have in core numerical representations has not been questioned until recently. What if the language in which math has been first acquired (LLmath) had a bigger impact in our math processing? Based on previous studies on language switching we hypothesize that balanced bilinguals would behave like unbalanced bilinguals when switching between the two codes for math. In order to address this question, we measured the brain activity with magneto encephalography (MEG) and source estimation analyses of 12 balanced Basque-Spanish speakers performing a task in which participants were unconscious of the switches between the two codes. The results show an asymmetric switch cost between the two codes for math, and that the brain areas responsible for these switches are similar to those thought to belong to a general task switching mechanism. This implies that the dominances for math and language could run separately from the general language dominance.
Read full abstract