Abstract

These lectures review the classical Moebius-Lie geometry and recent work on its extension. The latter considers ensembles of cycles (quadrics), which are interconnected through conformal-invariant geometric relations (e.g. "to be orthogonal", "to be tangent", etc.), as new objects in an extended Moebius--Lie geometry. It is shown on examples, that such ensembles of cycles naturally parameterise many other conformally-invariant families of objects, two examples---the Poincare extension and continued fractions are considered in detail. Further examples, e.g. loxodromes, wave fronts and integrable systems, are published elsewhere. The extended Moebius--Lie geometry is efficient due to a method, which reduces a collection of conformally invariant geometric relations to a system of linear equations, which may be accompanied by one fixed quadratic relation. The algorithmic nature of the method allows to implement it as a C++ library, which operates with numeric and symbolic data of cycles in spaces of arbitrary dimensionality and metrics with any signatures. Numeric calculations can be done in exact or approximate arithmetic. In the two- and three-dimensional cases illustrations and animations can be produced. An interactive Python wrapper of the library is provided as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.