Abstract
In conic linear programming -- in contrast to linear programming -- the Lagrange dual is not an exact dual: it may not attain its optimal value, or there may be a positive duality gap. The corresponding Farkas' lemma is also not exact (it does not always prove infeasibility). We describe exact duals, and certificates of infeasibility and weak infeasibility for conic LPs which are nearly as simple as the Lagrange dual, but do not rely on any constraint qualification. Some of our exact duals generalize the SDP duals of Ramana, and Klep and Schweighofer to the context of general conic LPs. Some of our infeasibility certificates generalize the row echelon form of a linear system of equations: they consist of a small, trivially infeasible subsystem obtained by elementary row operations. We prove analogous results for weakly infeasible systems. We obtain some fundamental geometric corollaries: an exact characterization of when the linear image of a closed convex cone is closed, and an exact characterization of nice cones. Our infeasibility certificates provide algorithms to generate {\em all} infeasible conic LPs over several important classes of cones; and {\em all} weakly infeasible SDPs in a natural class. Using these algorithms we generate a public domain library of infeasible and weakly infeasible SDPs. The status of our instances can be verified by inspection in exact arithmetic, but they turn out to be challenging for commercial and research codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.