We describe a protocol for estimating evolutionary rates from phylogenetic trees based on parsimony character optimization. The rate estimation is conducted through a TNT script and the results are analysed in a script for the software environment R. The TNT script allows analysing multiple optimal topologies, considering optimization ambiguity, and alternative time-calibrations or pre-calibrated trees. The R script summarizes estimated rates on a consensus tree and plots the variation of evolutionary rates through time, jointly with the phylogenetic diversity and a new metric (clade completeness index) that measures the distribution of missing data along the tree. We present results for simulated and empirical analyses, and evaluate the impact of missing data and alternative calibration methods in rate estimates. We found that while missing data can lower the nominal values of evolutionary rates, the overall pattern of rate variation through time remained robust. Empirical cases highlight different scenarios, such as datasets in which peaks of evolutionary rates can be coupled or decoupled from diversification dynamics (phylogenetic diversity) and cases in which missing data may influence the variation of estimated evolutionary rates. We conclude with recommendations for using this protocol and interpreting the results of parsimony-based rate estimates.
Read full abstract