Abstract

Repeated phenotypes, often referred to as 'homoplasies' in cladistic analyses, may evolve through changes in developmental processes. Genetic bases of recurrent evolution gained attention and have been studied in the past years using approaches that combine modern analytical phylogenetic tools with the stunning assemblage of new information on developmental mechanisms. In this review, we evaluated the topic under an integrated perspective, revisiting the classical definitions of convergence and parallelism and detailing comparative methods used to evaluate evolution of repeated phenotypes, which include phylogenetic inference, estimates of evolutionary rates and reconstruction of ancestral states. We provide examples to illustrate how a given methodological approach can be used to identify evolutionary patterns and evaluate developmental mechanisms associated with the intermittent expression of a given trait along the phylogeny. Finally, we address why repeated trait loss challenges strict definitions of convergence and parallelism, discussing how changes in developmental pathways might explain the high frequency of repeated trait loss in specific lineages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.