Abstract

Quaternary environmental changes fundamentally influenced the genetic diversity of temperate-zone terrestrial animals, including those in the Japanese Archipelago. The genetic diversity of present-day populations is taxon- and region-specific, but its determinants are poorly understood. Here, we analyzed cytochrome b gene (Cytb) sequences (1140 bp) of mitochondrial DNA (mtDNA) to elucidate the factors determining the genetic variation in three species of large moles: Mogera imaizumii and Mogera wogura, which occur in central and southern mainland Japan (Honshu, Shikoku, and Kyushu), and Mogera robusta, which occurs on the nearby Asian continent. Network construction with the Cytb sequences revealed 10 star-shaped clusters with apparent geographic affinity. Mismatch distribution analysis showed that modes of pairwise nucleotide differences (τ values) were grouped into five classes in terms of the level, implying the occurrence of five stages for rapid expansion. It is conceivable that severe cold periods and subsequent warm periods during the late Quaternary were responsible for the population expansion events. The first and third oldest events included island-derived haplotypes, indicative of the involvement of land bridge formation between remote islands, hence suggesting an association of the ends of the penultimate (PGM, ca. 130,000 years ago) and last (LGM, ca. 15,000 years ago) glacial maxima, respectively. Since the third event was followed by the fourth, it is plausible that the termination of the Younger Dryas and subsequent abrupt warming ca. 11,500 years ago facilitated the fourth expansion event. The second event most likely corresponded to early marine isotope stage (MIS) 3 (ca. 53,000 years ago) when the glaciation and subsequent warming period were predicted to have influenced biodiversity. Utilization of the critical times of 130,000, 53,000, 15,000, and 11,500 years ago as calibration points yielded evolutionary rates of 0.03, 0.045, 0.10 and 0.10 substitutions/site/million years, respectively, showing a time-dependent manner whose pattern was similar to that seen in small rodents reported in our previous studies. The age of the fifth expansion event was calculated to be 5800 years ago with a rate of 0.10 substitutions/site/million years ago during the mid-Holocene, suggestive of the influence of humans or other unspecified reasons, such as the Jomon marine transgression.

Highlights

  • Environmental fluctuations during the Quaternary Period, the 100,000-year cycles of glacial and interglacial intervals, shaped the genetic structure of terrestrial animal populations [1, 2]

  • In this study, we addressed the potential driving forces of late Quaternary environmental changes that have shaped the genetic diversity of animals in and around the Japanese Archipelago

  • We examined mitochondrial DNA (mtDNA) variations in the phylogroups of three mole species, M. imaizumii, M. wogura, and M. robusta, and provided insight into the phylogenetic status of the mtDNA phylogroups

Read more

Summary

Introduction

Environmental fluctuations during the Quaternary Period, the 100,000-year cycles of glacial and interglacial intervals, shaped the genetic structure of terrestrial animal populations [1, 2]. The Japanese Archipelago extends northeast to southwest along the coast of Asia and over a wide range of climatic zones, making it an ideal location to study the evolutionary dynamics of late Quaternary environmental fluctuations. During the 100,000year glacial cycle, these peripheral islands were close to the main island or connected by land bridges, resulting in both migration and isolation [7]. This phenomenon provides a useful metric to calibrate and assess divergence times in phylogenetic analyses conducted for rodent species [3, 7]. It is necessary to study other taxa for comparison with rodents

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call