Given the significant changes in the climate on the planet as a whole, databases and archives of data on the main climate-forming characteristics of the atmosphere, collected over long periods of time in various regions of the globe and, in particular, in the polar regions, acquire a special role. Total solar radiation is one of the most important parameters affecting the energy balance of the Earth-atmosphere system. We have created a database (DB) of hourly and daily sums of total radiation (Q) at the Russian Antarctic stations, designed to study the radiation regime of the Antarctic, from the beginning of actinometric observations to 2019. The information presented in the database was collected at five Antarctic stations — Bellingshausen, Vostok Mirny, Novolazarevskaya and Progress. The database has undergone a state registration procedure and is registered under No. 2020621401. The article gives a description of the structure of the DB and presents detailed information for each station. To provide an example of how database information can be used, characteristics of the total radiation in different parts of the Antarctic continent are obtained. Thus, it is found that the average monthly amounts of Q in the continental part of Antarctica on the high plateau (Vostok station) in conditions of minimal cloudiness and high transparency during the Antarctic summer are maximum and average 1240 MJ/m2. At the same time, at the tip of the Antarctic Peninsula (Bellingshausen station) during the same period, the average monthly amounts of Q due to the almost constantly present cloud cover do not exceed 570 MJ/m2. In the coastal areas at the three remaining stations, the average monthly amounts of total radiation range from 908 MJ/m2 (Progress) to 950 MJ/m2 (Mirny). Estimates of variability characteristics of daily, monthly, and annual sums of total radiation at all the five stations for the entire observation period up to 2019 were also obtained. The absence of statistically significant long-term trends in the annual and monthly sums of total radiation at all the stations under consideration was noted. The results of their analysis indicate that there are no significant changes in the inflow of total solar radiation to the Antarctic surface over more than sixty years of actinometric observations.
Read full abstract