Vanadium dioxide has emerged as a promising material for smart windows owing to the temperature-responsive variable near-infrared (NIR) transmittance. Yet, the poor NIR modulation ability challenges its efficiency in thermal management. In this study, by meticulously controlling the oxygen vacancy content at a low level, VO2 nanoparticles with excellent NIR modulation performance are achieved. Oxygen vacancy (VO) defects elimination leads to a remarkable decrease of reflectance in the monoclinic (M) phase, dramatically enhancing the near-infrared contrast of VO2 by 154 %. Density functional theory (DFT) calculations reveal that VO elimination favors low refractive index in the NIR region. The optimized experiment is carried out to prepare VO2 nanoparticles with low defects and high crystallinity. It shows the best NIR transmittance contrast at 1500 nm (ΔT1500 nm) of 24.4 %, simultaneously keeping a high luminous transmittance (Tlum) of 79.7 %. This study is believed to provide valuable guidance for the current defect and thermochromic performance study of VO2.