Abstract

This work highlights the novel approach of incorporating potassium iodide (KI) doping during the synthesis of In0.53P0.47 core quantum dots (QDs) to significantly reduce the concentration of vacancies (i.e., In vacancies; VIn-) within the bulk of the core QD and inhibit the formation of InPOx at the core QD-Zn0.6Se0.4 shell interfaces. The photoluminescence quantum yield (PLQY) of ~97% and full width at half maximum (FWHM) of ~40 nm were achieved for In0.53P0.47/Zn0.6Se0.4/Zn0.6Se0.1S0.3/Zn0.5S0.5 core/multi-shell QDs emitting red light, which is essential for a quantum-dot organic light-emitting diode (QD-OLED) without red, green, and blue crosstalk. KI doping eliminated VIn- in the core QD bulk by forming K+-VIn- substitutes and effectively inhibited the formation of InPO4(H2O)2 at the core QD-Zn0.6Se0.4 shell interface through the passivation of phosphorus (P)-dangling bonds by P-I bonds. The elimination of vacancies in the core QD bulk was evidenced by the decreased relative intensity of non-radiative unpaired electrons, measured by electron spin resonance (ESR). Additionally, the inhibition of InPO4(H2O)2 formation at the core QD and shell interface was confirmed by the absence of the {210} X-ray diffraction (XRD) peak intensity for the core/multi-shell QDs. By finely tuning the doping concentration, the optimal level was achieved, ensuring maximum K-VIn- substitution, minimal K+ and I- interstitials, and maximum P-dangling bond passivation. This resulted in the smallest core QD diameter distribution and maximized optical properties. Consequently, the maximum PLQY (~97%) and minimum FWHM (~40 nm) were observed at 3% KI doping. Furthermore, the color gamut of a QD-OLED display using R-, G-, and B-QD functional color filters (i.e., ~131.1%@NTSC and ~98.2@Rec.2020) provided a nearly perfect color representation, where red-light-emitting KI-doped QDs were applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.