Pyrotechnic displays often lead to significant increases in poor air quality. The widespread environmental fate-involving air, water, and spatial-temporal analyses-of fireworks-produced pollutants has seldom been investigated. This study examined the environmental fate of pollutants from the largest fireworks event in the U.S.: Macy's Fourth of July Fireworks show in New York City (NYC). Real-time PM2.5 and gravimetric PM2.5 and PM10 were collected at locations along the East River of NYC. Airborne particles were assayed for trace elements (X-ray fluorescence) and organic and elemental carbon (OC/EC). River water samples were evaluated by ICP-MS for heavy-metal water contamination. Spatial-temporal analyses were created using PM2.5 concentrations reported by both EPA and PurpleAir monitoring networks for NYC and 5 other major metropolitan areas. The fireworks event resulted in large increases in PM2.5 mass concentrations at the river-adjacent sampling locations. While background control PM2.5 was 10-15 µg/m3, peak real-time PM2.5 levels exceeded 3000 µg/m3 at one site and 1000 µg/m3 at two other locations. The integrated gravimetric PM2.5 and PM10 concentrations during the fireworks event ranged from 162 to 240 µg/m3 and 252 to 589 µg/m3, respectively. Zn, Pb, Sb, and Cu more than doubled in river water samples taken after the event, while S, K, Ba, Cu, Mg, Fe, Sr, Ti, and Zn increased in airborne PM2.5 from the fireworks. Data from hyperlocal monitoring networks for NYC and other metropolitan areas yielded similar, but generally smaller, increases in PM2.5 levels. Fireworks shows have been associated with environmental contamination. This comprehensive analysis considers the fate of pollutants from the largest annual U.S. pyrotechnic show through air, water, and hyperlocal temporal characterization.
Read full abstract