We investigate the time domain characterization of a coplanar waveguide (CPW) based on an on-chip electro-optic sampling (EOS) system for millimeter waveform metrology. The CPW is fabricated on a thin layer of low-temperature gallium arsenide (LT-GaAs), and the substrate material is GaAs. A femtosecond laser generates and detects ultrashort pulses on the CPW. The forward propagating pulses are simulated using a simplified current source for the femtosecond laser at different positions on the CPW for the first time. Then, the influences of the CPW geometry parameters on the measured pulses are discussed. The varying slot width has larger influences on the amplitude of millimeter wave pulses than the center conductor width and the pumping gap. Finally, in the frequency range of 10 GHz to 500 GHz, the transfer functions calculated by the time domain pulses are in good agreement with the transfer functions calculated by the frequency domain ports. The above results are important for improving the measurement precision of the millimeter waveform on the CPW for millimeter waveform metrology.
Read full abstract