We compute the distribution of electronic levels of native defects in amorphous silica from total energy differences of charge-state density functional theory calculations over an ensemble of atomic structures. The predicted distributions reproduce results from trap spectroscopy by charge injection experiments, validating the calculations. Furthermore, our study characterizes the experimentally inaccessible contributions of individual defect types to the overall distribution. Computed electron and hole trapping levels provide insight into the positive charge buildup in bulk silica observed in negative-bias-temperature-instability, an important degradation mechanism of metal-oxide-semiconductor devices.