Abstract

We compute the distribution of electronic levels of native defects in amorphous silica from total energy differences of charge-state density functional theory calculations over an ensemble of atomic structures. The predicted distributions reproduce results from trap spectroscopy by charge injection experiments, validating the calculations. Furthermore, our study characterizes the experimentally inaccessible contributions of individual defect types to the overall distribution. Computed electron and hole trapping levels provide insight into the positive charge buildup in bulk silica observed in negative-bias-temperature-instability, an important degradation mechanism of metal-oxide-semiconductor devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.