Electrolyte saturation can strongly affect the Li-O2 battery performance. However, it is unclear to what extent saturation reduction will impact the battery capacity. In this study, we investigated the influence of electrolyte saturation and distribution within a porous positive electrode on the deep discharge-charge capacities and cycling stability. The study used both models and experiments to investigate the change of electrolyte distribution, double-layer capacitance, ohmic resistance, and O2 concentration in the positive electrode at different electrolyte saturations. Results revealed that electrodes with 60% electrolyte saturation achieved almost the same maximum discharge (6.38 vs 6.76 mAh/cm2) and charge (5.52 vs 5.65 mAh/cm2) capacities with fully saturated electrodes. The partially wet positive electrode (40% saturation) obtained more cycles than the electrode with 100% saturation before the discharge capacity dropped below the cutoff point. However, the electrode with 40% saturation had a low average charging efficiency of 88.76%, whereas the fully saturated electrode obtained 98.96% charging efficiency. Moreover, the fully wet positive electrode had the lowest overpotential during cycling (1.26-1.39 V). The measured electrochemically active surface areas showed that even 40% saturation could sufficiently wet the positive electrode surface and obtain a double-layer capacitance (18.12 mF) similar to that with 100% saturation (20.4 mF). Furthermore, a considerable increase in O2 concentration at wetted surface areas was observed for the electrolyte saturation of less than 60% due to the significantly higher O2 diffusivity in the gas phase.
Read full abstract