The primary goal of this study was to examine electrophysiologic measures of channel interaction, electrode pitch discrimination ability using a pitch-ranking task, and behavioral threshold levels in individuals implanted with a straight electrode array versus a perimodiolar array. It was hypothesized that perimodiolar arrays should yield lower thresholds, less channel interaction as measured with the electrically evoked compound action potential (ECAP), and better electrode pitch-ranking ability. Results from ten adult Nucleus 24 recipients (N=5 straight array, N=5 perimodiolar Contour array) showed no significant difference in threshold between the two electrode designs; however, there was significantly better electrode pitch-ranking ability and less channel interaction as measured with the ECAP for perimodiolar electrodes. Additionally, there was a significant positive correlation between behavioral threshold and width of the ECAP interaction function for Contour group data. There was no significant correlation between behavioral threshold and electrode pitch-ranking ability. These data suggest that electrode design and/or perimodiolar position may reduce physiologic channel interaction in the cochlea and improve electrode pitch discrimination ability; however, this positive finding did not translate into significantly better speech perception ability for Contour subjects.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access