The Magdalena department, influenced by southern trade winds and ocean currents from the Atlantic and Pacific, is a climatically vulnerable region. This study assesses the Magdalena Department’s precipitation trends and stationary patterns by analyzing multi-year monthly records from 55 monitoring stations from 1990 to 2022. To achieve this, the following methods were used: (i) homogeneous regions were established by an unsupervised clustering approach, (ii) temporal trends were quantified using non-parametric tests, (iii) stationarity was identified through Morlet wavelet decomposition, and (iv) Sea Surface Temperature (SST) in four Niño regions was correlated with stationarity cycles. Silhouette’s results yielded five homogeneous regions, consistent with the National Meteorological Institute (IDEAM) proposal. The Department displayed decreasing annual trends (−32–−100 mm/decade) but exhibited increasing monthly trends (>20 mm/decade) during the wettest season. The wavelet decomposition analysis revealed quasi-bimodal stationarity, with significant semiannual cycles (~4.1 to 5.6 months) observed only in the eastern region. Other regions showed mixed behavior: non-stationary in the year’s first half and stationary in the latter half. Correlation analysis showed a significant relationship between SST in the El Niño 3 region (which accounted for 50.5% of the coefficients), indicating that strong phases of El Niño anticipated precipitation responses for up to six months. This confirms distinct rainfall patterns and precipitation trends influenced by the El Niño–Southern Oscillation (ENSO), highlighting the need for further hydrometeorological research in the area.
Read full abstract