Abstract

ABSTRACT Extreme precipitation in eastern China (EC) is closely related to the diversity of the decaying phases of El Niño (warm-pool El Niño, i.e., WP El Niño and cold-tongue El Niño, i.e., CT El Niño), but little attention is paid to how the El Niño event variability influences precipitation sources for EC from an isotopic perspective. Stable isotopes are ideal physical tracers that can distinguish different sources of precipitation and quantify their relative contributions to precipitation. Accordingly, this study investigates spatiotemporal variations of water vapor flux and oceanic fraction to precipitation during different ENSO events by an isotopic mixing model. The results show that spatiotemporal patterns of moisture divergence for the decaying phase of WP El Niño are different from that of CT El Niño. The oceanic fraction anomalies present similar spatiotemporal trends with advection fraction anomalies. The spatiotemporal variations of precipitation source anomalies for different El Niño events are closely related to atmospheric circulations, i.e., the intensity and location of the western Pacific subtropical high (WPSH). These findings provide isotopic insights into the precipitation sources by El Niño events in EC. Future studies may further focus on the mechanisms producing extreme precipitation between the two kinds of El Niño.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call