Abstract The design and purposes of an intermediate model are discussed along with fundamentals of the model and results of numerical experiments. The main purposes of the model are reconstructions of the schemes of the ocean large-scale circulation and paleocirculation. For these problems numerical effectiveness is the key factor. A novel feature is the parameterization of the side wall Ekman boundary layers which was introduced to enable the use of geostrophy for calculating baroclinic velocity. This approach of connecting the side frictional layers with a non-viscous interior is not model-specific and can be used in any model employing geostrophy in the interior. The method can facilitate the no-flux and no-slip boundary conditions at the side walls in such models. Preliminary numerical experiments with simple basin geometry and idealized forcing aimed at a comparison with primitive equation and planetary geostrophic models are carried out. A direct comparison with the Geophysical Fluid Dynamics Laboratory (GFDL) primitive equation model was performed for a quantitative test of the proposed model. The results of the experiments are discussed in the context of the applicability of intermediate models for studying ocean climate dynamics.