Abstract
A model for describing the vertically averaged vortex motions of an incompressible viscous fluid with an arbitrary vertical structure of the bottom Ekman boundary layer is proposed. An approach similar to that adopted in [1] is used: the second moments of the deviations from the average velocities required in order to close the vorticity equation are calculated by means of the Ekman solution for gradient flows, which makes it possible to take the integral bottom boundary layer effect into account. As a result, these terms lead to a specific form of nonlinear friction with a coefficient that depends on the vorticity of the average flow. In the particular case of a constant vertical turbulent transfer coefficient the inaccuracies of the model described in [1] can be eliminated. The generalized vorticity equation obtained has solutions of the vorticity spot type with a uniform internal vorticity distribution, which can be effectively investigated by means of appropriate algorithms [2]. The mechanism of entrainment at the vorticity front is illustrated with reference to the example of the evolution of vorticity spots. An exact solution of the problem of the evolution of an elliptic vortex (generalized Kirchhoff vortex), which in the case of fairly strong anticyclonic vorticity degenerates first into a line segment (vortex sheet) and then into a point vortex, is constructed. Equations describing the dynamics of an elliptic vorticity spot in an external field with a linear dependence of the velocity on the horizontal coordinates and generalizing the classical Chaplygin-Kida model [3, 4] are constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.