In the few past years, the economic and eco-friendly Cu2ZnSnS4 (CZTS) solar cells have caught lots of attentions. However, due to rather poor efficiency, identifying deficiencies and making improvements is necessary. In the present study, the performance improvement of ultrathin CZTS solar cells was achieved through (1) incorporation of anti-reflective coating (ARC) on the surface of cell and (2) embedding Al plasmonic nanostructures with different radius, periods, and vertical positions in the absorber layer. Various thicknesses of CZTS absorber layer were simulated optically and electrically using FDTD and DEVICE solver of Lumerical software. The reference solar cell consists of a 1.5-nm-thick CZTS absorber and exhibit an efficiency of up to 5.67%, short-circuit current density (Jsc) of 18.48 mA cm−2 and open circuit voltage of 0.58 V. Result showed a remarkable performance enhancement of the solar cell in spite of a very thin absorber layer. For a 500-μm-thick CZTS solar cell with the assistance of ARC and embedding Al plasmonic nanostructures, the efficiency is increased to 7.45% due to an increase in Jsc to 22.62 mA cm−2 with an open circuit voltage of 0.62 V.
Read full abstract