Co-sensitization is an important strategy toward efficiency enhancement of solar cells by enabling better light harvesting across the solar spectrum. Betanin is a natural dye which absorbs light in the major portion of the incident solar spectrum (green region) and is the most efficient natural pigment used in dye-sensitized solar cells. This study investigates the performance enhancement of a betanin solar cell by co-sensitizing it with two natural pigments which show complementary light absorption, i.e., indigo and lawsone, absorbing in the red and blue regions of the solar spectrum, respectively. The calculated highest occupied molecular orbital and lowest unoccupied molecular orbital energies of the pigment molecules, derived from density functional theory (DFT) simulations, confirmed their optimal alignment with respect to the conduction band energy of the TiO2 semiconductor and reduction potential energy level of the I–/I3– electrolyte, a necessary requirement for optimal device performance. Lawsone solar cells displayed better performance, showing average efficiencies of 0.311 ± 0.034%, compared to indigo solar cells showing efficiencies of 0.060 ± 0.004%. Betanin was co-sensitized with indigo and lawsone, and the performances of the co-sensitized solar cells were compared. The betanin/lawsone co-sensitized solar cell showed a higher average efficiency of 0.793 ± 0.021% compared to 0.655 ± 0.019% obtained for the betanin/indigo co-sensitized solar cell. An 11.7% enhancement in efficiency (with respect to betanin) was observed for the betanin/indigo solar cell, whereas a higher enhancement of 25.5% was observed for the betanin/lawsone solar cell. Electrochemical impedance spectroscopy studies confirmed that the higher efficiency can be attributed to the higher electron lifetime of 313.8 ms in the betanin/lawsone co-sensitized solar cell compared to 291.4 ms in the betanin/indigo solar cell. This is due to the energy levels being more optimally aligned in lawsone compared to that of indigo, as observed in the DFT studies, and the lack of dipole moment in indigo, resulting in more efficient charge separation and charge transfer in lawsone.