Chlorophyll-a is an important parameter that characterizes the eutrophication of water bodies. The advantage of ZY1-02D hyperspectral satellite subdivision in the visible light and near-infrared bands is that it highlights the unique characteristics of water bodies in the spectral dimension, and it helps to assess the Class II water bodies of inland lakes and reservoirs, making it an important tool for refined remote sensing detection of the environment. In this study, the Baiyangdian Nature Reserve in northern China, which contains a typical inland lake and wetland, was chosen as the study area. Using ZY1-02D hyperspectral synchronization transit images and in situ measured chlorophyll-a concentration as the data source, remote sensing of the chlorophyll-a concentration of inland lakes was conducted. By analyzing the correlation between the spectral reflectance of the ZY1-02D hyperspectral image and the chlorophyll-a concentration and using algorithms such as the single band, band ratio, and three bands to compare and filter characteristic wavelengths, a quantitative hyperspectral model of the chlorophyll-a concentration was established to determine the chlorophyll-a concentration of Baiyangdian Lake. The dynamic monitoring of the water body and the assessment of the nutritional status of the water body were determined. The results revealed that the estimation of the chlorophyll-a concentration of Baiyangdian Lake based on the hyperspectral Fluorescence Line Height (FLH) model was ideal, with an R2 value of 0.78. The FLH model not only comprehensively considers the effects of suspended solids, yellow substances, and backscattering of the water body on the estimation of the chlorophyll-a concentration, but also considers the influence of the elastic scattering efficiency of the chlorophyll. Based on the ZY1-02D hyperspectral data, a spatial distribution map of the chlorophyll-a concentration of Baiyangdian Lake was created to provide new ideas and technical support for monitoring inland water environments.