Abstract

Biopotential signals contain essential information for assessingthe functionality of organs and diagnosing diseases. We present a flexible sensor, capable of measuring biopotentials, in real time, in awireless and fully-passive manner. The flexible sensor collects and transmits biopotentials to an external reader without wire, battery, or harvesting/regulating element. The sensor is fabricated on a 90 μm-thick polyimide substrate with afootprint of 18×15×0.5mm3. The wireless fully-passive acquisition of biopotentials is enabled by the RF (Radio Frequency) microwave backscattering effect where the biopotentials are modulated by an array of varactors with incoming RF carrier that is backscattered to the external reader. The flexile sensor is verified and validated by emulated signal and electrocardiogram (ECG), electromyogram (EMG), and electrooculogram (EOG), respectively. A deep learning algorithm analyzes the signal quality of wirelessly acquired data, along with the data from commercially available wired sensor counterparts. Wired and wireless data shows <3% discrepancy in deep learning testing accuracy for ECG and EMG up to the wireless distance of 240mm. Wireless acquisition of EOG further demonstrates accurate tracking of horizontal eye movement with deep learning training and testing accuracy reaching up to 93.6% and 92.2%, respectively, indicating successful detection of biopotentials signal as low as 250 μVPP. These findings support that the real-time wireless fully-passive acquisition of on-body biopotentials is indeed feasible and may find various uses for future clinical research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.