The simultaneous detection of electroencephalography (EEG) signals and neurotransmitter levels plays an important role as biomarkers for the assessment and monitoring of emotions and cognition. This paper describes the development of boron and nitrogen codoped graphene-diamond (BNGrD) microelectrodes with a diameter of only 200 μm for sensing EEG signals and dopamine (DA) levels, which have been developed for the first time. The optimized BNGrD microelectrode responded sensitively to both EEG and DA signals, with a signal-to-noise ratio of 9 dB for spontaneous EEG signals and a limit of detection as low as 124 nM for DA. Furthermore, the BNGrD microelectrodes demonstrate excellent repeatability, reproducibility, and stability for the detection of EEG and dopamine. These results indicate that the BNGrD microelectrode creates suitable conditions for establishing a correlation between the EEG signals and neurotransmitters. A flexible printed circuit board with BNGrD microelectrodes for an eight-channel EEG headband, portable EEG collector, and light stimulation glasses are designed. The self-designed EEG collector adopts a split design strategy of digital and analog signal modules and uses miniaturized impedance-matched BNGrD microelectrodes, which effectively reduce the noise of the electrophysiological signals. The BNGrD microelectrode-based portable EEG/electrochemical analysis system detects EEG signals and DA levels in a noninvasive and minimally invasive manner and has application prospects in remote online diagnosis and treatment of patients with emotional and cognition-related diseases.
Read full abstract