Abstract

Classical and recent evidence has suggested that alpha oscillations play a critical role in temporally discriminating or binding successively presented items. Challenging this view, Buergers and Noppeney [Buergers, S., & Noppeney, U. The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6, 732-742, 2022] found that by combining EEG, psychophysics, and signal detection theory, neither prestimulus nor resting-state alpha frequency influences perceptual sensitivity and bias in the temporal binding task. We propose the following four points that should be considered when interpreting the role of alpha oscillations, and especially their frequency, on perceptual temporal binding: (1) Multiple alpha components can be contaminated in conventional EEG analysis; (2) the effect of alpha frequency on perception will interact with alpha power; (3) prestimulus and resting-state alpha frequency can be different from poststimulus alpha frequency, which is the frequency during temporal binding and should be more directly related to temporal binding; and (4) when applying signal detection theory under the assumption of equal variance, the assumption is often incomplete and can be problematic (e.g., the magnitude relationships between individuals in parametric sensitivity may change when converted into nonparametric sensitivity). Future directions, including solutions to each of the issues, are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call