Abstract
An intriguing notion in cognitive neuroscience posits that alpha oscillations mould how the brain parses the constant influx of sensory signals into discrete perceptual events. Yet, the evidence is controversial and the underlying neural mechanism unclear. Further, it is unknown whether alpha oscillations influence observers’ perceptual sensitivity (i.e. temporal resolution) or their top-down biases to bind signals within and across the senses. Combining EEG, psychophysics and signal detection theory, this multi-day study rigorously assessed the impact of alpha frequency on temporal binding of signals within and across the senses. In a series of two-flash discrimination experiments twenty human observers were presented with one or two flashes together with none, one or two sounds. Our results provide robust evidence that pre-stimulus alpha frequency as a dynamic neural state and an individual’s trait index does not influence observers’ perceptual sensitivity or bias for two-flash discrimination in any of the three sensory contexts. These results challenge the notion that alpha oscillations have a profound impact on how observers parse sensory inputs into discrete perceptual events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.