Abstract

BackgroundVirtual reality motion sickness (VRMS) is a key issue hindering the development of virtual reality technology, and accurate detection of its occurrence is the first prerequisite for solving the issue. ObjectiveIn this paper, a convolutional neural network (CNN) EEG detection model based on multi-scale feature correlation is proposed for detecting VRMS. MethodsThe model uses multi-scale 1D convolutional layers to extract multi-scale temporal features from the multi-lead EEG data, and then calculates the feature correlations of the extracted multi-scale features among all the leads to form the feature adjacent matrixes, which converts the time-domain features to correlation-based brain network features, thus strengthen the feature representation. Finally, the correlation features of each layer are fused. The fused features are then fed into the channel attention module to filter the channels and classify them using a fully connected network. Finally, we recruit subjects to experience 6 different modes of virtual roller coaster scenes, and collect resting EEG data before and after the task to verify the model. Results: The results show that the accuracy, precision, recall and F1-score of this model for the recognition of VRMS are 98.66 %, 98.65 %, 98.68 %, and 98.66 %, respectively. The proposed model outperforms the current classic and advanced EEG recognition models. SignificanceIt shows that this model can be used for the recognition of VRMS based on the resting state EEG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.