Developing easy and customizable strategies for the directional structure modulation of multicomponent nanosystems to influence and optimize their properties are a paramount but challenging task in nanoscience. Here, we demonstrate highly controlled eccentric off-center positioning of metal-core in metal@silica core-shells by utilizing an in situ generated biphasic silica-based intraparticle solid-solid interface. In the synthetic strategy, by including Ca2+-ions in silica-shell and successive oxidative and reductive annealing at high temperature, a unique hairline-biphasic interface is evolved via the heat-induced concentric radial segregation of calcium silicate phase at the interior and normal silica phase at the exterior of core-shell, which can effectively arrest the outwardly migrating metal-core within rubbery calcium silicate phase, affording various eccentric core-shells, where core-positions are flexibly controlled by the annealing time and amounts of initially added Ca2+-ions. In the structure-property correlation study, the strategy allows fine-tuning of dipolar interaction-based blocking temperatures and magnetic anisotropies of different eccentric core-shells as the function of variable off-center distance of magnetic core without changing the overall size of nanoparticles. This work demonstrates the discovery and potential application of biphasic solid-solid media interface in controlling the heat-induced migration of metal nanocrystals and opens the avenues for exploiting the rarely studied high-temperature solid-state nanocrystal conversion chemistry and migratory behavior for directional nanostructure engineering.
Read full abstract