Abstract

A novel fiber curvature sensor without temperature cross interference based on a single hole twin eccentric core fiber has been proposed. Anti-resonant mechanism combined with inline Mach-Zehnder interference (MZI) structure are applied to the measurands detection. The spectrum is composed of a comb spectrum caused by the inline MZI and several dominant resonant wavelengths induced by anti-resonant effect. The curvature sensitivity of -1.54dB/m-1 can be achieved by intensity demodulation of the selected dip of Gaussian fitting. Similarly, the temperature sensitivity of 70.71pm/°C and 34.17pm/°C are respectively achieved by tracking coherent decrease point obtained by the FFT band pass filter method and Gaussian fit dip. Consequently, a relatively higher resolution of temperature measurement can be realized by the two methods mentioned above. The proposed sensor has a great potential for structural health monitoring, such as buildings, towers, bridges, and many other infrastructures due to its compact structure, easy fabrication and without cross impacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.