As one of the major acetyltransferases in mammalian cells, p300 (also known as EP300) and its highly related protein CBP (also known as CREBBP), collectively termed p300/CBP, is characterized as a key regulator in gene transcription by modulating the acetylation of histones. In recent decades, proteomic analyses have revealed that p300 is also involved in the regulation of various cellular processes by acetylating many non-histone proteins. Among the identified substrates, some are key players involved in different autophagy steps, which together establish p300 as a master regulator of autophagy. Accumulating evidence has shown that p300 activity is controlled by many distinct cellular pathways to regulate autophagy in response to cellular or environmental stimuli. In addition, several small molecules have been shown to regulate autophagy by targeting p300, suggesting that manipulation of p300 activity is sufficient for controlling autophagy. Importantly, dysfunction of p300-regulated autophagy has been implicated in a number of human disorders, such as cancer, aging and neurodegeneration, highlighting p300 as a promising target for the drug development of autophagy-related human disorders. Here, we focus on the roles of p300-mediated protein acetylation in the regulation of autophagy and discuss implications for autophagy-related human disorders.
Read full abstract