Abstract

In neurodegenerative diseases, microglia switch to an activated state, which results in excessive secretion of pro-inflammatory factors. Our work aims to investigate how this paracrine signaling affects neuronal function. Here, we show that activated microglia mediate non-cell-autonomous inhibition of neuronal autophagy, a degradative pathway critical for the removal of toxic, aggregate-prone proteins accumulating in neurodegenerative diseases. We found that the microglial-derived CCL-3/-4/-5 bind and activate neuronal CCR5, which in turn promotes mTORC1 activation and disrupts autophagy and aggregate-prone protein clearance. CCR5 and its cognate chemokines are upregulated in the brains of pre-manifesting mouse models for Huntington's disease (HD) and tauopathy, suggesting a pathological role of this microglia-neuronal axis in the early phases of these diseases. CCR5 upregulation is self-sustaining, as CCL5-CCR5 autophagy inhibition impairs CCR5 degradation itself. Finally, pharmacological or genetic inhibition of CCR5 rescues mTORC1 hyperactivation and autophagy dysfunction, which ameliorates HD and tau pathologies in mouse models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.