Data-based prognostic methods exploit sensor data to forecast the remaining useful life (RUL) of industrial settings to optimize the scheduling of maintenance actions. However, implementing sensors may not be cost-effective or practical for all components. Traditional preventive approaches are not based on sensor data; however, they schedule maintenance at equally spaced intervals, which is not a cost-effective approach since the distribution of the time between failures changes with the degradation state of other parts or changes in working conditions. This study introduces a novel framework comprising two maintenance scheduling strategies. In the absence of sensor data, we propose a novel dynamic preventive policy that adjusts intervention intervals based on the most recent failure data. When sensor data are available, a method for RUL prediction, designated k-LSTM-GFT, is enhanced to dynamically account for RUL prediction uncertainty. The results demonstrate that dynamic preventive maintenance can yield cost reductions of up to 51.8% compared to conventional approaches. The predictive approach optimizes the exploitation of RUL, achieving costs that are only 3–5% higher than the minimum cost achievable while ensuring the safety of critical systems since all of the failures are avoided.
Read full abstract