Abstract

Data-based prognostic methods exploit sensor data to forecast the remaining useful life (RUL) of industrial settings to optimize the scheduling of maintenance actions. However, implementing sensors may not be cost-effective or practical for all components. Traditional preventive approaches are not based on sensor data; however, they schedule maintenance at equally spaced intervals, which is not a cost-effective approach since the distribution of the time between failures changes with the degradation state of other parts or changes in working conditions. This study introduces a novel framework comprising two maintenance scheduling strategies. In the absence of sensor data, we propose a novel dynamic preventive policy that adjusts intervention intervals based on the most recent failure data. When sensor data are available, a method for RUL prediction, designated k-LSTM-GFT, is enhanced to dynamically account for RUL prediction uncertainty. The results demonstrate that dynamic preventive maintenance can yield cost reductions of up to 51.8% compared to conventional approaches. The predictive approach optimizes the exploitation of RUL, achieving costs that are only 3–5% higher than the minimum cost achievable while ensuring the safety of critical systems since all of the failures are avoided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.