Introduction The objective was to determine the effects of growth factor treatment on dental pulp cell sensitivity to toxicity of 2 composite restoration materials, Flow Line and Durafill VS, and a calcium hydroxide pulp capping material, Dycal. Methods Toxicity of the dental materials to cultures of primary dental pulp cells was determined by the MTT metabolism assay. The ability of 6 different growth factors to influence the toxicity was tested. Results A 24-hour exposure to either Flow Line or Durafill VS caused approximately 40% cell death, whereas Dycal exposure caused approximately 80% cell death. The toxicity of Flow Line and Durafill VS was mediated by oxidative stress. Four of the growth factors tested (bone morphogenetic protein [BMP]-2, BMP-7, epidermal growth factor [EGF], and transforming growth factor [TGF]-β) decreased the basal MTT values while making the cells resistant to Flow Line and Durafill VS toxicity except BMP-2, which made the cells more sensitive to Flow Line. Treatment with fibroblast growth factor-2 caused no change in basal MTT metabolism, prevented the toxicity of Durafill VS, but increased the toxicity of Flow Line. Treatment with insulin-like growth factor-I (IGF-I) increased basal MTT metabolism and made the cells resistant to Flow Line and Durafill VS toxicity. None of the growth factors made the cells resistant to Dycal toxicity. Conclusions The results indicated that growth factors can be used to alter the sensitivity of dental pulp cells to commonly used restoration materials. The growth factors BMP-7, EGF, TGF-β, and IGF-I provided the best profile of effects, making the cells resistant to both Flow Line and Durafill VS toxicity.
Read full abstract