Abstract
This study evaluated weight loss and surface roughening after toothbrushing of different resin composites: one packable (Solitaire 2, Heraeus Kulzer), one microhybrid (Charisma, Heraeus Kulzer), one nanohybrid (Simile, Pentron) and one microfilled (Durafill VS, Heraeus Kulzer). Cylindrical specimens (n = 20) were prepared. Half of the samples were submitted to 60,000 strokes, at 4 Hz, with a dentifrice-water slurry. Control samples (n = 10) remained stored at 37 degrees C. Pre- and post-abrasion parameters for weight (mg) and surface roughness (Ra, microm) were determined on an analytical balance and a surface profilometer. Data were separately submitted to Repeated Measures ANOVA and Tukey's test (a = 0.05). Percentages of weight loss were analyzed by ANOVA and Tukey's test (a = 0.05). The relationship between both evaluations was assessed by Pearson's test (a = 0.05). The means (%) for weight loss (standard deviation) were 0.65(0.2), 0.93(0.2), 1.25(0.6) and 1.25(0.4) for Simile, Durafill, Charisma and Solitaire, respectively. Baseline roughness means ranged from 0.065(0.01), 0.071(0.01), 0.066(0.02) and 0.074(0.01) for Simile, Durafill, Charisma and Solitaire, respectively, to 0.105(0.04), 0.117(0.03), 0.161(0.03) and 0.214(0.07) after testing. The composites with larger fillers presented higher weight loss and roughening than the finer materials (p < 0.05). For both evaluations, control specimens showed no significant alteration. No significant relationship between loss of weight and roughness alteration was detected (r = 0.322, p = 0.429).
Highlights
Resin-based restoratives are increasingly being used in dentistry, and the continual development of materials has made a variety of tooth-colored composites available for clinical use
This study evaluated weight loss and surface roughening after toothbrushing of different resin composites: one packable (Solitaire 2, Heraeus Kulzer), one microhybrid (Charisma, Heraeus Kulzer), one nanohybrid (Simile, Pentron) and one microfilled (Durafill VS, Heraeus Kulzer)
Packable composites were introduced with the so-called advantage of allowing the material to be compacted into the cavity
Summary
Resin-based restoratives are increasingly being used in dentistry, and the continual development of materials has made a variety of tooth-colored composites available for clinical use. These present a wide range of organic and inorganic components that may affect both their handling characteristics and properties. Nanofilled and nanohybrid composites were introduced, in an attempt to provide a restorative material that could be used in both anterior and posterior areas, presenting high initial polishing combined with superior polish and gloss retention.[1]. Clinicians tend to concentrate on occlusal wear, some researchers have demonstrated that the abrasion process produced by oral hygiene methods can adversely affect the surface characteristics of restoratives.[2,3,4,5,6] this process could interfere with both health and esthetics, as rough surfaces may predispose to biofilm accumulation and extrinsic staining
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have