A new dual-band low-noise amplifier (LNA) operating at L1/E1 1.575 GHz and L5/E5 1.192 GHz center frequencies for global navigation satellite system receivers is proposed. A doubled common-source amplifier architecture is used with a single input, shared gate inductor, and two outputs to split the RF signal into separate RX channels. The main advantage of the proposed circuit is compatibility with widespread multi-band antennas with single RF connectors dedicated to high-precision applications, as well as the possibility to use cheap SAW filters with small footprints to build low-cost, highly accurate GNSS receiver modules. The input and both outputs are well matched to 50 Ω impedance. The LNA is designed with a 110 nm CMOS process, consuming 6.13 mA current from a 1.5 V supply. The measured noise figures and voltage gains of the dual-band LNA are, respectively, NF1/NF5 = 3.23/3.5 dB and G1/G5 = 21.22/18.2 dB in the band of interest for each channel. The measured impedance matching at the input (S11) and output (S22) of the dual-band low-frequency amplifier is as follows: S11_L1 = −23.89, S11_L5 = −8.42, S22_L1 = −12.65, S22_L5 = −15.08. The one-decibel compression points are L1 band PdB1 = −37.71 dBm and L5 band PdB5 = −34.72 dBm, respectively.