The present study aimed to determine the anti-inflammatory effects of Tribulusterrestris L (aerial parts) and to identify the anti-inflammatory agents from active extracts and fractions together with in silico prediction of their mechanism of action, pharmacokinetics, and toxicity profile. The anti-inflammatory activity was evaluated for Dichloromethane, methanol, and its fractions (chloroform, ethyl acetate, n-butanol by Carrageenan induced rat paw edema. The phytoconstituents of the anti-inflammatory active fraction (chloroform fraction of methanol extract) was identified using Thermo Scientific TM DFS high-resolution GC-MS. The GC-MS analysis revealed 13 compounds from which (-)-loliolide was the most abundant compound by peak area. It was docked, using Autodock 4.0 onto three Key enzymes involved in the inflammatory cascade (Cyclooxygenase (COX-1 &2) and 5-lipooxygenase (5-LOX)). It displayed binding energies; -6.98 kcal/mole (COX-1) compared to -6.83kcal/mole for standard, -6.64 kcal/mole (COX-2) compared to -6.88 kcal/mole for standard and -5.25 kcal/mole (5-LOX) compared to -6.89 kcal/mole for standard. Toxicity risks, drug likeliness, and pharmacokinetic properties were studied by different online open-source programs. Good binding energy, drug-likeness, and efficient pharmacokinetic parameters of (-)-loliolide suggest it as a good inhibitor, however, further research is needed.