Abstract

A series of novel benzimidazole-derived carbohydrazones was designed, synthesized and evaluated for their dual inhibition potential against monoamine oxidases (MAOs) and acetylcholinesterase (AChE) using multitarget-directed ligand approach (MTDL). The investigated compounds have exhibited moderate to excellent in vitro MAOs/AChE inhibitory activity at micromolar to nanomolar concentrations. Compound 12, 2-(1H-Benzo[d]imidazol-1-yl)-N'-[1-(4-hydroxyphenyl) ethylidene]acetohydrazide has emerged as a lead dual MAO-AChE inhibitor by exhibiting superior multi-target activity profile against MAO-A (IC50 = 0.067 ± 0.018 µM), MAO-B (IC50 = 0.029 ± 0.005 µM) and AChE (IC50 = 1.37 ± 0.026 µM). SAR studies suggest that the site A (hydrophobic ring) and site C (semicarbazone linker) modifications attempted on the semicarbazone-based MTDL resulted in a significant enhancement in the MAO-A/B inhibitory potential and a drastic decrease in the AChE inhibitory activity. Further, molecular docking and dynamics simulation experiments disclosed the possible molecular interactions of inhibitors inside the active site of respective enzymes. Also, computational prediction of drug-likeness and ADME parameters of test compounds revealed their drug-like characteristics. Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.