With a three-dimensional classical ensemble method, we theoretically investigated frustrated double ionization (FDI) of atoms with different laser wavelengths. Our results show that FDI can be more efficiently generated with shorter wavelengths and lower laser intensities. With proper laser parameters more FDI events can be generated than normal double ionization events. The physical condition under which FDI events happen is identified and explained. The energy distribution of the FDI products - atomic ions in highly excited states - shows a sensitive wavelength dependency.