Abstract

We study double ionization (DI) dynamics of vibrating HeH+ versus its isotopic variant HeT+ in strong laser fields numerically. Our simulations show that for both cases, these two electrons in DI prefer to release together along the H(T) side. At the same time, however, the single ionization (SI) is preferred when the first electron escapes along the He side. This potential mechanism is attributed to the interplay of the rescattering of the first electron and the Coulomb induced large ionization time lag. On the other hand, the nuclear motion increases the contributions of these two electrons releasing together along the He side. This effect differentiates DI of HeH+ from HeT+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.