Abstract

Double ionization of helium by a single intense (above 10^{18} W/cm^{2}) linearly polarized extreme ultraviolet laser pulse is studied by numerically solving the full-dimensional time-dependent Schrödinger equation. For the laser intensities well beyond the perturbative limit, novel gridlike interference fringes are found in the correlated energy spectrum of the two photoelectrons. The interference can be traced to the multitude of two-electron wave packets emitted at different ionization times. A semianalytical model for the dressed two-photon double ionization is shown to qualitatively account for the interference patterns in the joint energy spectrum. Similar signatures of interferences between transient induced time-delayed ionization bursts are expected for other atomic and molecular multielectron systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.