Extensive studies on TiO2-based colossal permittivity (CP, dielectric constant ε’ >103) materials have focused on the cation doping of metal elements; however, little attention has been paid to nonmetallic dopants. Compared to metallic elements, nonmetallic atoms with small radii and high activities, such as H, C, B, and N, can be used as anion-doping elements. Their incorporation into the TiO2 lattice includes interstitial and substitutional doping, which can influence the bandgap of TiO2 and its electron transport performance differently, thereby exhibiting considerable potential in TiO2-based applications. In this study, different N-containing compounds (BN and NH4Cl) were doped into rutile TiO2, while homogeneous ceramics of single-phase rutile TiO2 were prepared via solid-state sintering. The effects of co-doping N, Cl, and N, B on the dielectric properties of rutile TiO2 ceramics were investigated. While N and Cl doping showed no considerable effect on the dielectric properties of rutile TiO2 ceramics, the co-doping of N and B doping in rutile TiO2 considerably increased the dielectric constant to >104 with suppressed tan δ in a wide frequency range from 1 kHz to 10 MHz. These ceramics exhibited excellent frequency stability (up to 100 MHz) and temperature stability (153–513 K), which outperforms most reported transition metal co-doped TiO2 ceramics, thereby highlighting the untapped potential of the non-metallic dopants in enhancing dielectric materials.