In this study, we synthesized MnOx nanowires via hydrothermal methods and explored the impact of nickel (Ni) doping on their morphology and electrochemical properties. We investigated the structural and chemical changes induced by Ni incorporation by utilizing TEM and XPS analyses. Our results revealed that Ni doping influenced the distribution of manganese oxidation states, with 1.6 wt% Ni-doped nanowires exhibiting the optimized condition. Also, we observed a balance between the Mn3+/Mn4+ ratio with the Ni doping. Electrochemical characterization demonstrated enhanced capacity in Ni-MnOx nanowires at the 1.6 wt% Ni doping level. Galvanostatic charge-discharge measurements confirmed the superior performance of this level of Ni doping; moreover, the fabrication of asymmetric supercapacitor cells using these nanowires showed improved energy storage capabilities. The main results showed exceptionally high capacity (955.55 and 383.33 mAh g−1 at 1 and 20 A g−1, respectively) and an excellent rate capability. Cycling stability tests over 8500 cycles demonstrated excellent retention of capacity, underscoring the durability of the optimized Ni-MnOx nanowires, with a retention of 85 % of its initial capacity. Thus, this study emphasizes the significance of Ni doping in MnOx nanowires for enhancing electrochemical performance when the synthetic process is controlled, offering valuable insights for high-performance energy storage device development.
Read full abstract