Abstract

Indium oxide (In2O3) is a widely used n-type semiconductor for detection of pollutant gases; however, its gas selectivity and sensitivity have been suboptimal in previous studies. In this work, zinc-doped indium oxide nanowires with appropriate morphologies and high crystallinity were synthesized using chemical vapor deposition (CVD). An accurate method for electrical measurement was attained using a single nanowire microdevice, showing that electrical resistivity increased after doping with zinc. This is attributed to the lower valence of the dopant, which acts as an acceptor, leading to the decrease in electrical conductivity. X-ray photoelectron spectroscopy (XPS) analysis confirms the increased oxygen vacancies due to doping a suitable number of atoms, which altered oxygen adsorption on the nanowires and contributed to improved gas sensing performance. The sensing performance was evaluated using reducing gases, including carbon monoxide, acetone, and ethanol. Overall, the response of the doped nanowires was found to be higher than that of undoped nanowires at a low concentration (5 ppm) and low operating temperatures. At 300 °C, the gas sensing response of zinc-doped In2O3 nanowires was 13 times higher than that of undoped In2O3 nanowires. The study concludes that higher zinc doping concentration in In2O3 nanowires improves gas sensing properties by increasing oxygen vacancies after doping and enhancing gas molecule adsorption. With better response to reducing gases, zinc-doped In2O3 nanowires will be applicable in environmental detection and life science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.