Drug repositioning, the discovery of new therapeutic uses for existing drugs, is increasingly gaining attention as a cost-effective and high-yield drug discovery strategy. Existing methods integrate diverse biological information into heterogeneous networks, providing a comprehensive framework for understanding complex drug–disease associations, which also will introduces noise into the data and affect the performance of the model. In this paper, first, a novel drug repositioning method, namely DVGEDR, is proposed, which generates two subgraphs of the target drug–disease pair to fuse biological information and integrate drug–disease associations from two distinct perspectives: drug–disease heterogeneous network and similarity networks. Next, a Multiple Attention Graph encoder (MAGencoder) module is designed to learn subgraph features and explore relationships between entities, which also improve the interpretability of the model. Finally, a graph enhancement mechanism is devised to improve the perception of critical information of model, enabling the model to flexibly process different graph structures. Performance comparisons with baseline models on three public datasets validate the state-of-the-art performance of DVGEDR in the field of drug repositioning. In case study, DVGEDR identifies 10 new candidate drugs for breast cancer and COVID-19, demonstrating not only superior performance in experimental settings but also potential therapeutic advantages in clinical environments. Furthermore, we select two sets of instances and further analyzed the attention distribution of the different nodes in the subgraph to explain the decision process of the model.
Read full abstract