The in-wheel motors drive intelligent vehicle (IMDIV) has a strong ability of dynamic control, which makes it be a major development path of intelligent vehicles in the future. However, its stability is easily deteriorated by the impact of the road when driving on potholed road. To tackle this issue, a vehicle posture control method based on road feedback and elevation recognition is proposed. Firstly, an elevation recognition algorithm of adaptive Kalman filter (AKF) based on vehicle dynamic response is proposed after considering the flooded road and the system noise uncertainty. Secondly, a vehicle posture controller of fuzzy active disturbance rejection control (FADRC) is designed, with the function of dynamically adjusting the active disturbance rejection control (ADRC) parameters. It is designed to implement front suspension feedback control and rear suspension wheelbase preview control. At last, the road elevation recognition algorithm and vehicle posture control method are proved by Simulink simulation and off-line hardware in the loop test. The results revealed that the AKF can effectively recognize both white noise pavement and potholed road, and the recognition accuracy is greater than 90%. The FADRC controller realizes accurate front suspension feedback control and rear suspension wheelbase preview control by adjusting the real-time online parameters of ADRC. The proposed vehicle posture control method can effectively control the pitch and roll motion, which significantly improves the stability of IMDIV on potholed road. This study can serve as a reference for the posture stability control of IMDIV on potholed road.
Read full abstract